Polycrystalline Shape Memory Alloy under Multi-Axial Loading Conditions.
نویسندگان
چکیده
منابع مشابه
A jumping shape memory alloy under heat
Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensit...
متن کاملSuperelastic Behavior under Cyclic Loading for Coil Spring of Ti-Ni Shape Memory Alloy
The superelastic behavior of coil springs of a Ti-Ni shape memory alloy was investigated using loading-unloading cycling tests under isothemal temperatures. The effects of the Ni content and shape memory treatment temperatures on the cyclic behavior in the superelastic deformation were investigated. The deformation behavior within the elastic region of the parent phase scarcely changes during t...
متن کاملAn experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading
Constitutive laws for shape-memory alloys subjected to multiaxial loading, which are based on direct experimental observations, are generally not available in the literature. Accordingly, in the present work, tension–torsion tests are conducted on thin-walled tubes (thickness/radius ratio of 1:10) of the polycrystalline superelastic/shape-memory alloy Nitinol using various loading/unloading pat...
متن کاملThermo-mechanical behavior of shape memory alloy made stent- graft by multi-plane model
Constitutive law for shape-memory alloys subjected to multi-axial loading, which is based on a semi-micromechanical integrated multi-plane model capable of internal mechanism observations, is generally not available in the literature. The presented numerical results show significant variations in the mechanical response along the multi loading axes. These are attributed to changes in the marten...
متن کاملMultiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response
Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Society of Materials Science, Japan
سال: 1996
ISSN: 1880-7488,0514-5163
DOI: 10.2472/jsms.45.527